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This paper examines the non-linear dynamic behaviour of a flexible shaft. The shaft is
mounted on two journal bearings and the axial load is supported by a defective
hydrodynamic thrust bearing at one end. The defect is a levelness defect of the rotor. The
thrust bearing behaviour must be considered to be non-linear because of the effects of
the defect. The shaft is modelled with typical beam finite elements including effects such as
the gyroscopic effects. A modal technique is used to reduce the number of degrees of
freedom. Results show that the thrust bearing defects introduce supplementary critical
speeds. The linear approach is unable to show the supplementary critical speeds which are
obtained only by using non-linear analysis.

© 2002 Academic Press

1. INTRODUCTION

The economical constraints of industry oblige manufacturers to increase the capabilities of
their plants. In the turbomachinery field the rule is the same. Mechanisms such as turbines
or pumps are used in more and more exacting conditions: higher operating speeds,
pressures and charges. Engineers must design these types of rotating machinery to very high
accuracy.

The dynamic behaviour of the shaft depends strongly on elements surrounding the shaft
such as squeeze film dampers, journal bearings and thrust bearings. However, these
surrounding elements might also have some manufacturing defects. It is important to
consider these defects because they might generate poor dynamic behaviour of the rotating
machinery. In hydrodynamic lubrication, the film thickness can be very small and the rotor
defects can induce important variations of the pressure field. The study of defect bearings
has been carried out by several authors and the objectives of these studies were to evaluate
the minimum film thickness. Fantino [1], Fantino and Fréne [2] and Berthe et al. [3]
presented studies on the influence of the shape defects and surface roughness on the
hydrodynamics of lubricated systems. They have particularly shown that the Reynolds
equation was not applicable when the defects are significant and instead, the viscous thin
film equation developed by Berthe and Godet has to be used [4]. Some studies have been
carried out on the influence of a defective journal bearing on the dynamic behaviour of
a flexible shaft. Bonneau and Fréne [5] have shown, through linear calculations that
a defective journal bearing can create a dynamic perturbation of an unpredictable
frequency. The defect can excite the critical speeds even if there are no imbalance forces.
Some studies have been carried out on the action of a thrust bearing on lateral shaft
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vibrations [6, 7]. These authors have shown that the influence of a thrust bearing may be
significant and positive. Berger et al. [8] have studied in particular the effects of the
non-linear dynamic behaviour of a defective thrust bearing on the bending vibrations of
a flexible shaft. The defect was defined as an angle between the rotation axis of the shaft and
the normal vector of the rotor. The axial dynamic behaviour of the shaft was not considered.
They have shown that, even without an imbalance force, a small defect on the thrust bearing
rotor excites the first critical speed. The response is similar to an imbalance response.
Another domain of defect bearing study is the defects due to the elastic deformation of
contact surfaces. This has been developed in the field of connecting rod bearings of petrol
and diesel engines [9-13]. These deformations are induced by the large value of load
resulting from the high hydrodynamic pressure due to the explosion and the connecting
rod inertia. This elastohydrodynamic problem is one of the simultaneous approaches of
pressure field computation and deformation field calculation.

The aim of this paper is to study the non-linear effects of a defective thrust bearing on the
dynamic behaviour of a flexible shaft. The defect is a wave on the rotor surface due to
a manufacturing problem. Both the axial and the bending behaviour of the rotor are taken
into account.

2. THEORY

2.1. THRUST BEARING

2.1.1. Model

The thrust bearing has four fixed pads. Figure 1 represents the hydrodynamic thrust
bearing model. (0q, X, Vo, Zo) is the fixed reference, (04, Xy, ¥1,21) and (03, x5, y2,2,) are,
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Figure 1. Thrust bearing scheme.
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respectively, fixed to the centre o of the stator and the centre o, of the rotor. The rotor has
three translations in the directions, xq, yo and z, and two misalignment angles (x,- and
y,-axis). z, is the axis of rotation of the rotor.

In the cylindrical reference (0y,1,t, zo), the thin film equation is defined by

o ( Jop\ . @ (Kap\ Oh ch
ar<’h 6r>+69<rae Sl g
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6U. 6U.
+ 6uhr 8—7'2 + 6uh 0_92 + 6uhU, + 12urW,, (1)

where p is the pressure field, h = H, — H is the film thickness, u is the dynamic viscosity
and U,, V,, W, are the velocity components of the points M, of the rotor.

The equation is solved using finite difference with the Gauss—Seidel method. The
boundary conditions are the following:

o the feed pressure in each groove (atmospheric pressure) and
o the Christopherson assumption, i.e., negative pressures are set to zero at each iteration.

The force components and the moment components are calculated by integrating the
pressure field into the surface S, of the rotor.

F, = prds, M, (0,) = jjonAPdS 2, 3)

Sz S,

2.1.2. THRUST BEARING DEFECT

The defect of a thrust bearing is a wave in the rotor due to a manufacturing problem. For
example, this defect can be generated by vibrations during the manufacturing process or it
can be due to material relaxation after the manufacturing process. Figure 2 presents this
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Figure 2. Thrust bearing defect (period 27/3).
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wave for a period equal to 27/3. In this study, the period is equal to 27/3 and =
The amplitude of the defect is equal to 5, 10 and 15 um. As explained in reference [6],
the following phenomenon occurs. In the defective thrust bearing, the fluid film located
between the stator and a peak of the wave on the rotor is thinner than the film near
a hollow. Therefore, it creates a pressure peak which generates a dynamic bending moment
on the rotor. This moment rotates with the defect. Thus, a levelness defect with n,,
peaks generates a bending moment which excites the rotor at the frequency n,, * shaft
rotation frequency. Defects on the stator do not have the same influence: these defects
create small static variations on the pressure which do not influence the shaft dynamic
behaviour.

2.2. BEARING MODEL

The shaft is mounted on two identical hydrodynamic bearings whose dynamic behaviour
can be modelled with dynamic coefficients. However, the dynamic coefficients are valid for
a constant speed and in simulations the rotational speed varies from 3000 to 20000 r.p.m.
Thus, in order to calculate the bearing force, the thin film behaviour is assumed to be
non-linear and then the film equation has to be solved using finite differences. However, the
non-linear analysis of the shaft requires a large numerical calculation, and so the solution
for a short bearing has been chosen. This assumption helps to simplify the differential
equation; the circumferential flow is neglected. This is true when the length of the journal
bearing remains small compared to its radius. The force components are obtained by
integrating the pressure field with the following boundary conditions: the feed pressure on
both sides of the bearing (atmospheric pressure) and the Gumbel assumption (x film), i.e.,
the negative pressure, are set to zero [5]. It must be noted that the finite length bearings can
be used and the same phenomenon should occur.

2.3. SHAFT MODEL

2.3.1. Lateral dynamic behaviour

The rotor is modelled with typical beam finite elements including gyroscopic effects [ 14].
Each element has four degrees of freedom: two translations in the directions x4 and y,, and
two axes of rotations (x, and y,).

The differential system with {8} as the node displacement vector is

[M]1{8} + [C1{8} + [K]{8} = {Fis} + {Fu} + {F,.}. @)

where [ M] is the mass matrix, [C] is the damping and gyroscopic matrix, [K] is the
stiffness matrix, {F,,;} is the imbalance forces, {F,;} is the non-linear bearing forces, {F,,} is
the gravity forces.

This system has 4n degrees of freedom (n is the number of nodes). To reduce the degrees of
freedom, a modal approach is used by Lacroix [15] and Lalanne et al. [16]. The journal
bearing is first modelled by a linear stiffness and then the fundamental principle of
mechanics on the rotor could be written as

[M] {6} + ([Kr] + [Kbearing]){a} = 0 (5)
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The solution has the following form: {8} = {8,}¢"” and the first six modes are calculated.
Lacroix [15] has shown that six modes are enough to obtain an acceptable precision.
A change of variable is made in the following form: {8} = [\]{q} with [{] the matrix
obtained with modal vectors. {{;} and {q} are the modal vectors of displacement. A new
system is written where the bearing effect appears in the modal stiffness matrix, i.e.,

[m]{d} + [cl{q} + [k']{q} = {f}

with:

[m] =W [MI[¥],  [e] =[W]'TCIV],
(©)
(k'] =[] TKIDW],  {f} = [W]'{F}.

For a non-linear calculation, the linear journal bearing effect [ Kj,,.i,,] must be subtracted
from the modal stiffness [k'] and must be introduced as a non-linear effect.
Then

[m]{q} + [c]{q} + [k]1{q} = {f} + {Fnl}
with
[k] = [k'] — [W] [Kpearing] W] (7)

Note
1. The value of [kpearing] s difficult to select. Kassai [17] showed that it was necessary to
take an intermediate value of bearing stiffness (for computing the modal basis). This is
done to obtain a modal basis that allows for a displacement in the bearing nodes.
2. No material damping is considered.

2.3.2. Axial dynamic behaviour

In the axial direction (z,), the shaft is considered rigid. Its dynamic behaviour is described
by the following equation:

mz=F, +F, )]

where m is the shaft mass, F,_is the axial force generated by the thrust bearing and F, is an
external axial force.

2.4. NON-LINEAR SIMULATION

The simulations of the axial dynamic behaviour and the lateral dynamic behaviour of the
flexible rotor are independent. The only relation between these models is the thrust bearing.
The coupling between fluid elements and the shaft is calculated using a non-linear
approach. The simulation of the lateral behaviour of the flexible rotor is a step-by-step
approach on a modal basis.
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The flow chart is the following:
1. Begin with initial values of modal positions and velocities;
2. Calculation of external modal forces (imbalance, weight, etc.);
3. Calculation of physical displacements and velocities in bearings and thrust bearings
(through modal basis change);
Calculation of non-linear bearing forces (in the real basis);
Calculation of non-linear thrust bearing forces and moments (in the real basis);
Computation of all forces in the modal basis (through modal basis change);
Calculation of modal accelerations (differential system);
Time integration (using the variable step Euler method);
9. Shaft speed incremented;

10. The process restarts from 2.
The simulation of the axial behaviour of the rotor is obtained using a similar process in the
real basis (direction z).

® N n ks

3. RESULTS

3.1. DATA

The shaft is mounted on two identical bearings and a thrust bearing supports the axial
load at one end. The model of the shaft is presented in Figure 3.

The thrust bearing has four pads. The data for each pad are the angle f = 80, the outer
radius R, = 0:04 m and the inner radius R; = 0-02 m. The entry thickness k., the exit
thickness h, of each pad and the axial clearance of the thrust bearing are defined in relation
to a virtual surface S (Figure 4). This surface S does not represent a real surface and it is used
just as a position reference. The entry thickness £, is equal to 55 um and the exit thickness
hy is equal to 75 um. The axial clearance is defined as the distance h, between the centre of
the surface S, and the surface S of the thrust bearing. In different simulations, it ranges from
100 to 160 pm.

The data for the journal bearings are the following: length L = 0-015m, radius
R =003 m, radial clearance C = 3-:0E —05m and dynamic viscosity u = 0-05 Pas.
(Figure 4) To quantify the damping and stiffness of journal bearings 1 and 2, the dynamic
coefficients are given in Table 1.

3.2. SHAFT BEHAVIOUR

In this section, the bending vibrations of the shaft are studied.

002 m 076 m 0-02 m

A
Bearing 1 0-06 m Bearing 2

Figure 3. Geometrical data of the shaft.
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h Runner

Figure 4. Film circumferential thickness in the thrust bearing.

TaBLE 1

Damping and stiffness coefficients of the journal bearings

Stiffness coefficients (N/m) Damping coefficients (N s/m)

kxx kxy kyx kyy bxx bx)’ byx byy

6000 r.p.m. 15E+06 100 E406 —90E+06 30 E4+06 300 E+03 40E+03 40 E+03 300 E403
12000 r.pm. 17 E+06 190 E4+06 —190E+06 33 E4+06 300E+03 27 E+03 27 E+03 300 E+03
18000 r.p.m. 20 E4+06 280E+06 —270E+06 30 E4+06 300E+03 10 E+03 10 E4+03 280 E+03

Imbalance Static load
Perfect  f,1ce F,, F,
Thrust E '
Bearing o o
o I ................. - «ffmm Static load
= z o o E,
i Bearing 1 Bearing 2

Figure 5. Rotating system: (wofh) dynamic force, (») static force. [|[F| =800N; |F,| = 2000 N;
[Fimsl = 1-5E — 05 kgm. ’

3.2.1. Perfect thrust bearing and imbalance force

The first calculation deals with the non-linear behaviour of the shaft with a perfect thrust
bearing. In the middle of the rotor, an imbalance force excites the system and a static load is
applied in order to stabilize it. Moreover, a perfect thrust bearing supports an axial static
force (Figure 5).

Figure 6 presents the non-linear imbalance response of the shaft. The trajectory
amplitude of the middle of the shaft is plotted in the plane (x,, yo).

Note: All the amplitudes given in this paper are non-dimensional (amplitude/bearing
radial clearance ratio). The classical choice is to relate the shaft amplitude to the bearing
radial clearance. This clearance corresponds to a maximum displacement of the shaft in its
housing. Using this value as a reference is a good way to compare several results.

The first bending critical speed appears at 12 700 r.p.m. and the peak amplitude is equal
to 0-45 times the bearing radial clearance. This imbalance response is a usual result.

3.2.2. Defective thrust bearing and without imbalance force
3.2.2.1. Response of the shaft. The influence of a defective thrust bearing on the dynamic

behaviour of the shaft is studied. A static load is applied in the middle of the shaft and the
defective thrust bearing supports an axial force. It must be pointed out that no unbalance
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Figure 6. Non-linear imbalance response of the shaft middle with a perfect thrust bearing.

Defective Static load
thrust K.
bearing
I ------------------ .« Static load
/ I o F,
Beanng I Bearing 2

Figure 7. Rotating system: (xwgx) static force. |Fy|| = 800 N; [[F,|| = 2000 N.
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Figure 8. Response of the shaft with a defective thrust bearing and without imbalance force: (——) 2 waves;
(----) 3 waves.

force is applied on the shaft (Figure 7). The amplitude of the defect is equal to 10 pm and the
period of the waves is 7 (two waves) and 27/3 (three waves).

Figure 8 displays the trajectory amplitude of the middle of the shaft for two periods of the
waves (7 and 27/3). When the period is equal to 7, a new apparent critical speed appears at
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Figure 9. Response of the shaft with a defective thrust bearing—influence of the amplitude of the defect: (——)
Sum; (----- ) 10 pm; (-+++) 15 pm.

6400 r.p.m. and the peak amplitude is equal to 0-46 times the bearing radial clearance (c).
When the period is 2n/3, a new apparent critical speed is generated at a lower value
(4300 r.p.m.) and the peak amplitude is smaller (0-4 C).

The values of the peak for a defective thrust bearing or an imbalance force of
1-5E — 05 kgm are equivalent. A levelness defect in a thrust bearing whose period is equal
to 2n/m,, generates an apparent critical speed equal to first bending critical speed/n,, ratio.
This apparent critical speed is due to the bending moment generated by the defect which
excites the rotor at a frequency equal to n,, * the shaft rotation frequency. It must be added
that the smaller the number of defect waves, the higher the new critical speed and the more
significant is the peak amplitude.

3.2.2.2. Influence of the amplitude of the defect. The influence of the amplitude of the defect
on the dynamic behaviour of the shaft is analyzed. Three simulations are made for the
previous rotating system. The amplitude of the defect is equal to (successively) 5, 10 and
15 pm. Figure 9 shows the response of the middle of the shaft. The higher the amplitude of
the defect, the more significant is the peak amplitude. Thus, a slight defect (15 um; that is,
about rotor thickness = 10~ %) can generate a peak whose amplitude is equal to 54% = radial
bearing clearance.

3.2.2.3. Influence of the axial load. The effect of the axial load on the amplitude of the shaft
vibrations is examined. Figures 10 and 11, respectively, present the trajectory amplitude of
the middle of the shaft and the axial clearance of the thrust bearing, when the axial load
successively is equal to 500, 100 and 2000 N.

The heavier the axial load, the more significant are the amplitudes of vibrations, because
the heavier the axial load, the smaller the axial clearance of the thrust bearing and the
higher the amplitude of the defect/axial clearance of the thrust bearing ratio (Figure 11). It is
an interesting result because, on the contrary, when an imbalance force only excites the shaft
(perfect thrust bearing), the heavier the axial load, the less significant are the amplitudes of
vibrations [18]. Thus it is not easy to adjust the axial load in order to decrease the
amplitudes of the vibrations of the shaft.
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Figure 10. Response of the shaft with a defective thrust bearing—influence of the axial load: (——) 500 N;
(----- ) 1000 N; (-----) 2000 N.
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Figure 11. Response of the shaft with a defective thrust bearing—influence of the axial load: (——) 500 N;
(----- ) 1000 N; (-----) 2000 N.

3.2.3. Defective thrust bearing & imbalance force

The calculation deals with the behaviour of the shaft with a defective thrust bearing
(10 pm, 27/3). Moreover, in the middle of the rotor, an unbalance force excites the system
(Figure 12).

Figure 13 displays the response at the middle of the shaft. Two peaks of vibrations at 4300
and 12 700 r.p.m. appear. The first peak (4300 r.p.m.) is generated by the defect in the thrust
bearing and the second peak (12 700 r.p.m.) is due to the imbalance force which excites the
first bending critical speed. The amplitudes of the peaks are the same in comparison with
the “defective thrust bearing” case and the “perfect thrust bearing & imbalance force” case.
In experiments, a sub-critical peak may sometimes be observed. This type of levelness defect
would be able to explain this subcritical speed.
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2 Imbalance Static load
Defective force F F
thrust LGk X b *
bearing

(=] [m]
I. .................. @ Static load
= Z o o F,
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Figure 12. Rotating system: (wadis) dynamic force; (») static force. ||F| =800N; [F,| = 2000 N;
[Fimp|l = 1-5E — 05 kgm. ;
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Figure 13. Response of the shaft with a defective thrust bearing and an imbalance force.

4. CONCLUSION

The influence of the dynamic behaviour of a defective thrust bearing on the bending
vibrations of a flexible shaft can be strong. A small levelness defect in a thrust bearing
whose period is equal to 2m/n,,, generates a new apparent critical speed equal to
the first bending critical speed/n,, ratio. This apparent critical speed is due to the
bending moment generated by the defect which excites the rotor at a frequency equal to
n, *the shaft rotation frequency. The smaller the number of defect waves, the more
significant are the amplitudes of vibration. The influence of the axial load on the
amplitude of the shaft vibrations is important. The heavier the axial load, the more
significant are the amplitudes of vibrations. The amplitudes of vibrations generated
by a levelness defect in a thrust bearing can be equivalent to the vibrations due to an
imbalance force. It must be pointed out that the linear approach is unable to show the
supplementary critical speeds which are obtained only by using non-linear analysis for the
thrust bearing: the film thickness in the thrust bearing varies each time (due to the rotor
defects) and it is impossible to linearize the film behaviour by stiffness and damping
coeflicients. The phenomenon is due to the pressure field which rotates with the shaft and
excites its first natural frequency. In fact, it appears more as a new excitation frequency than
a new critical speed, linear model cannot be applied but the physical phenomenon is almost
linear.
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APPENDIX A: NOMENCLATURE

(00,X0,Y05Z0) fixed reference

(00,751, 20) local reference

(01,X1,V1,21) reference fixed to the thrust bearing rotor

(02,X2,¥2,22) reference fixed to the thrust bearing stator

P pressure field (Pa)

h film thickness (m)

U,, Vo, W, velocity components of the thrust bearing rotor in the reference (0o, 7,1, zo) (m/s)

U

dynamic viscosity (Pas)
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radial parameter (m)

angular parameter being its origin on the axis x,
angle of each thrust bearing pad (°)
outer radius of pad thrust bearing (m)
inner radius of pad thrust bearing (m)
entry thickness of pad thrust bearing (m)
exit thickness of pad thrust bearing (m)
thrust bearing axial clearance (m)
number of waves: the period of the defect is 27n/n,,
thrust bearing axial force (N)

radial clearance (m)

bearing length (m)

bearing radial clearance (m)

shaft mass (kg)

number of nodes

node displacement (m)

damping and gyroscopic matrix (N s/m)
stiffness matrix (N/m)

bearing stiffness (N/m)

bearing stiffness coefficients (N/m)
bearing damping coefficients (N s/m)
mass matrix (kg)

modal matrix

imbalance forces (N)

non-linear bearing forces (N)

gravity forces (N)

static lateral axial load (N)

external axial force (N)

rotational shaft frequency (Hz)

53



	1. INTRODUCTION
	2. THEORY
	Figure 1
	Figure 2

	3. RESULTS
	Figure 3
	Figure 4
	TABLE 1
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13

	4. CONCLUSION
	REFERENCES
	APPENDIX A: NOMENCLATURE

